Search results for "Physcomitrella patens"
showing 4 items of 4 documents
GENETIC AND PHYSIOLOGICAL STUDIES OF THE EFFECT OF LIGHT ON THE DEVELOPMENT OF THE MOSS, PHYSCOMITRELLA PATENS
1978
Abstract The germination of Physcomitrella patens spores only occurs when wet spores are exposed to light. Depending on their ripeness, spores require from 44 to 64 h illumination to bring about maximum germination. There is a lag period of about 15 h between the reception of sufficient light to elicit germination before germination can be observed. Wavelengths in the range 640-680 nm are much more effective in inducing germination than longer or shorter wavelengths, but far-red reversal of red light induction of germination has not been demonstrated. Light also has very marked effects on protonemal and gametophore development. In darkness, only caulonemata are produced, and these grow nega…
The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants
2008
We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The …
Fatty acid composition of mutants of the moss Physcomitrella patens
1981
Abstract The fatty acid composition of various mutant strains of the moss Physcomitrella patens has been compared to the wild-type. These included strains defective in their responses to auxins and/or cytokinins, one which releases much more cytokinin into the medium than the wild-type, and two aphototropic strains. The lipids of the aphototropic mutants were also studied after culture in different light regimes. Although some differences in fatty acid composition have been found between strains, these alone are probably not responsible for their physiological differences. Considerable changes occur in many fatty acids in senescent or dark-grown material, including changes in the proportion…
Evolutionary Analysis of DELLA-Associated Transcriptional Networks
2017
DELLA proteins are transcriptional regulators present in all land plants which have been shown to modulate the activity of over 100 transcription factors in Arabidopsis, involved in multiple physiological and developmental processes. It has been proposed that DELLAs transduce environmental information to pre-wired transcriptional circuits because their stability is regulated by gibberellins (GAs), whose homeostasis largely depends on environmental signals. The ability of GAs to promote DELLA degradation coincides with the origin of vascular plants, but the presence of DELLAs in other land plants poses at least two questions: what regulatory properties have DELLAs provided to the behavior of…